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We study transport of interacting particles in weakly disordered media. Our one-dimensional
system includes (i) disorder: the hopping rate governing the movement of a particle between two
neighboring lattice sites is inhomogeneous, and (ii) hard core interaction: the maximum occupancy
at each site is one particle. We find that over a substantial regime, the root-mean-square displace-
ment of a particle, σ, grows super-diffusively with time t, σ ∼ (ε t)2/3, where ε is the disorder

strength. Without disorder the particle displacement is sub-diffusive, σ ∼ t1/4, and therefore disor-
der strongly enhances particle mobility. We explain this effect using scaling arguments, and verify
the theoretical predictions through numerical simulations. Also, the simulations show that regardless
of disorder strength, disorder leads to stronger mobility over an intermediate time regime.
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Disorder, inhomogeneities, and impurities are ubiqui-
tous in physical systems and are widely used to control
properties of matter. Some of the most fascinating phe-
nomena in contemporary physics including localization
[1–3], glassiness [4, 5], slow relaxation [6], and frustra-
tion [7] are unique consequences of disorder.

While the effects of disorder on noninteracting par-
ticles are well-understood, the influence of disorder on
interacting, strongly correlated particles remain an open
question [8]. In a quantum system, an isolated particle is
localized by disorder, but localization can be destroyed
when there are two interacting particles [9]. Hence, dis-
order and particle interactions compete. We investigate
this competition between disorder and interaction in a
classical system where inhomogeneities are known to trap
particles and drastically decrease their mobility. We find
that disorder leads to super-diffusive displacements over
an intermediate regime whereas in the absence of disor-
der, the displacements are sub-diffusive.

We generalize the standard exclusion process [10, 11]
to study the interplay between disorder and interactions
[12–15]. Our system is an infinite one-dimensional lattice
whose sites may be either occupied by a single particle
or vacant. Initially, the lattice is populated at random
by identical particles with concentration c. Each particle
may hop from an occupied site into a neighboring vacant
site and this diffusion process is governed by the follow-
ing rates: p+(i) is the hopping rate from site i to site
i + 1, and similarly, p

−
(i) is the hopping rate from site i

to site i−1. While the total hopping rate is uniform, and
is set to one without loss of generality, p

−
(i)+p+(i) = 1,

the lattice is inhomogeneous. At every site there is, with
equal probabilities, a bias to the right, p+ = 1/2 + ε, or
a bias to the left, p+ = 1/2− ε, as illustrated in figure 1.
The parameter 0 ≤ ε ≤ 1/2 is the disorder strength. Note
that the disorder is quenched, uncorrelated, and uniform
in strength. Moreover, since every lattice site accommo-
dates a single particle, the particles interact via hard core

FIG. 1: Illustration of the disordered interacting particle sys-
tem. The arrows indicate the bias at each site, the circles
indicate vacant sites, and the bullets indicate occupied sites.

repulsion. Our problem generalizes two well-known pro-
cesses: single-file diffusion [16–23] with interaction but no
disorder corresponds to the limit ε → 0, and Sinai diffu-
sion [24–29] with disorder but no interaction corresponds
to the limit c → 0.

Our focus is transport in this disordered interacting
particle system. Since there is no overall bias in either
direction, on average, the displacement of a particle with
respect to its initial position, x, does not change with
time, 〈x〉 = 0. The brackets denote an average over
all realizations of the random process and over all disor-
ders. We ask the most elementary question: how does the
root-mean-square displacement, σ, defined by σ2 = 〈x2〉,
evolve? We address this question via a scaling analy-
sis of weakly disordered systems, ε ¿ 1, and numerical
simulations with general disorder strengths.
Early Times. When disorder is weak, ε ¿ 1, there is
an initial period during which particles do not “feel” the
disorder and hence move at random, p+ = p

−
= 1/2. In

this early regime, disorder is irrelevant and the behav-
ior is dominated by particle interactions. Without disor-
der, the hard core repulsion causes a dramatic change in
mobility: whereas an isolated particle moves diffusively,
σ ∼ t1/2, the root-mean-square displacement of an inter-
acting particle grows sub-diffusively with time [16–20]

σ ∼ t1/4. (1)

Therefore, the movement of a particle is severely hin-
dered by the presence of other particles. We illustrate
this remarkable collective behavior for extremely dense
systems [17] where there are large clusters of occupied
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sites that are separated by isolated vacancies. Particles
move by exchanging their position with neighboring va-
cancies. Furthermore, the sparse vacancies can be re-
garded as non-interacting [17]. A particle that, up to
time t, exchanges position with a total of N = N+ + N

−

vacancies of which N+ were initially located to its right
and N

−
were initially located to its left, has the dis-

placement x = N+ − N
−

. First, since the vacancies are
randomly distributed in the initial configuration, the ex-
cess of vacancies in one direction follows from the law
of large numbers, |N+ − N

−
| ∼ N1/2, and consequently,

x ∼ N1/2. Second, vacancies that were initially located
at a distance on the order of the diffusive length scale t1/2

from a particle may exchange position with it. Hence
N ∼ (1 − c) t1/2 and combining this scaling law with
x ∼ N1/2 yields (1). Although this scaling argument ap-
plies to densely packed systems, the behavior (1) holds
for arbitrary concentrations [16–19]. This suppressed dif-
fusion is a direct consequence of the hard core interaction.
Intermediate Times. Eventually, the disorder be-
comes relevant, and the biased hopping rates do affect
the particle displacement. Although there is no global
bias in the hopping rates, there certainly are local biases,
as illustrated in figure 1 where sites with negative bias are
in the majority. We expect that, at least at intermediate
times scales, or equivalently, intermediate length scales,
these local biases lead to directed motion [30–32].

To quantify how such local biases affect particle mo-
bility, we consider a particle that visits σ distinct sites of
which n+ have a positive bias and n

−
have a negative bias

with σ = n+ + n
−

. Since the disorder is uncorrelated,
the difference between the number of positive and nega-
tive sites, ∆ = |n+−n

−
|, grows diffusively with the total

number of visited sites, ∆ ∼ σ1/2. The excess of sites bi-
ased in one direction leads to a drift in this preferred di-
rection with the small velocity v ∼ ε∆/σ or v ∼ ε σ−1/2.
Furthermore, the ballistic length scale x ∼ v t gives an
estimate for the displacement, x ∼ (ε t)σ−1/2. Since the
displacement must be of the same order as the total num-
ber of sites visited, x ∼ σ, we have

σ ∼ ε t σ−1/2. (2)

We thus arrive at our main result: the displacement be-
comes super-diffusive because of the disorder,

σ ∼ (ε t)2/3. (3)

Of course, this length scale ultimately exceeds the sup-
pressed diffusion length scale (1). Hence, the inhomoge-
neous hopping rates generate a stochastic local velocity
field, and as a result, there are local drifts that signifi-
cantly enhance the mobility of the particles.
Late Times. To understand the behavior at late times,
we recall that the displacement of a non-interacting par-
ticle in a random disorder is logarithmically slow [24–26]

x ∼ ε−2(ln t)2. (4)
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FIG. 2: The three regimes of behavior (5). The displacement
σ is plotted versus time t using a double logarithmic scale.

At sufficiently large length scales, the random disorder
generates a potential well that confines the particle. The
depth of this potential well is the sum of all the biases in
a given range, U(x) =

∑x
i=1

(p+(i) − p
−

(i)), and there-
fore, the depth of the well grows diffusively with distance,
U ∼ ε

√
x. This stochastic well constitutes a barrier that

the particle must overcome, and since the time to escape
out of this barrier grows exponentially with the depth of
the well, t ∼ exp(U) ∼ exp(ε

√
x ), the displacement is

logarithmic as in (4).
We argue that the slow mobility (4) also characterizes

the asymptotic late time behavior of interacting particles
in disorder. First, the confining potential well remains
the same even when there are multiple particles. Second,
the probability that a given particle escapes the well is
exponentially small, and therefore, only mildly affected
by the presence of other particles. We envision a sce-
nario where particles are stuck in a local minimum of the
potential and escape the barrier one at a time. Such an
escape process is dominated by the same exponential es-
cape time that characterizes an isolated, non-interacting
particle. Therefore at late times, interacting particles in
a random disorder also follow the logarithmic displace-
ment law (4). Particle interactions become irrelevant and
the behavior is governed by disorder alone.
Three Time Regimes. By combining the early (1),
intermediate (3), and late (4) time behaviors, we con-
clude that the mobility of a given particle exhibits three
distinct regimes of behavior (see also figure 2):

σ ∼











t1/4 t ¿ ε−8/5,

(ε t)2/3 ε−8/5 ¿ t ¿ ε−4,

ε−2(ln t)2 ε−4 ¿ t.

(5)

The time and length scales that characterize the crossover
points can be obtained by matching the two correspond-
ing behaviors. The transition from the early regime into
the intermediate regime occurs at time t ∼ ε−8/5 and
length σ ∼ ε−2/5, while the transition from the interme-
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FIG. 3: The early and intermediate behaviors for weak dis-
order, ε = 10−2 (bullets) and no disorder, ε = 0 (squares).
Shown is the displacement σ versus time t as well as a ref-
erence line with slope 2/3. The inset shows that the scaled

displacement σε2/5 is a universal function of the scaled time
tε8/5 using ε = 0.01 (bullets) and ε = 0.003 (squares).

diate domain into the late domain occurs at time t ∼ ε−4

[33] and length σ ∼ ε−2, as shown in figure 2. Since
this displacement length scale diverges as the disorder
strength diminishes, the mobility enhancement effect be-
comes stronger as the disorder weakens.

Let us recap the three regimes of behavior. At the
early stages, particle interactions dominate over disor-
der, and the motion of particles is sub-diffusive due to
the hard core repulsion. In the intermediate regime, dis-
order and interactions are both relevant. The particles
stream following the stochastic local velocity field and
the result is a strong, super-diffusive transport. At late
times, disorder dominates and interactions become irrele-
vant. Particles are trapped by a stochastic potential well
and the displacement is logarithmically slow because the
escape time is exponentially large.

As further support of the scaling behavior above, we
can show that the stochastic potential well plays no role
in the intermediate regime. Clearly, since the overall hop-
ping rate equals one, the time scale characterizing the
movement between neighboring sites is also of order one.
The time to escape out of a well grows exponentially with
the depth of the well, t ∼ exp(U), but this time scale be-
comes appreciable only when the depth of the potential
well is large, ε

√
x À 1, or equivalently, when the dis-

placement becomes sufficiently large, x À ε−2. Indeed,
this length scale is realized only at the late time regime,
as shown in figure 2. Therefore, trapping is negligible
throughout the intermediate regime.

Let us now consider the effect of disorder on a non-
interacting particle. In the absence of disorder, ε = 0,
the particle displacement is unhindered and thus, purely
diffusive, σ ∼ t1/2. In weak disorder, ε ¿ 1, an iso-
lated particle undergoes ordinary diffusion at early times,
but is later slowed down considerably according to (4).
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FIG. 4: The late time behavior for ε = 10−1. Shown is the dis-
placement σ versus time t for non-interacting particles (bul-
lets) and for interacting particles (squares).

Hence, there are two distinct regimes of behavior when
interactions are absent [34]

σ ∼
{

t1/2 t ¿ ε−4,

ε−2(ln t)2 ε−4 ¿ t.
(6)

We note that the crossover time scale matches the up-
per time scale in (5). Thus, in the absence of particle
interactions, disorder slows the particles down.
Numerical Simulations. We performed extensive
Monte Carlo simulations to test the scaling predictions.
The simulations are a straightforward implementation of
the transport process. Initially, identical particles ran-
domly occupy the sites of a one-dimensional lattice of
size L with periodic boundary conditions, and the initial
concentration equals c. Each lattice site has a bias in
the positive or the negative direction as p+ = 1/2 + ε or
p
−

= 1/2− ε with equal probabilities. The dynamics are
asynchronous. In an elementary step, a randomly chosen
particle hops to the right with probability p+ or to the
left with probability p

−
, and this hop is successful only if

the neighboring site is vacant. Subsequently, time is aug-
mented by the inverse number of particles, t → t + 1/N .
This elementary step is repeated indefinitely. We present
results of simulations with a system large enough to em-
ulate an infinite lattice, L = 4 × 105, and c = 1/2.

We verified the super-diffusive behavior (3) using a
weak disorder (figure 3). Even though the super-diffusive
behavior is an intermediate asymptotic, the duration of
this regime grows rapidly as the disorder weakens. We
checked that: (i) as implied by (5), a universal func-
tion describes how the scaled displacement σε2/5 de-
pends on the scaled time tε8/5 (figure 3, inset), (ii)
the concentration does not play an important role using
c = 1/4 and c = 3/4, and (iii) a different type of disorder
where p+ is drawn from a flat distribution in the range
[1/2 − ε : 1/2 + ε] gives qualitatively similar results.

To test the behavior at late times, we also simulated
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FIG. 5: The displacement σ versus time t for interacting parti-
cles (main figure) and noninteracting particles (inset) without
disorder (ε = 0, squares) and with moderate disorder values of
ε = 0.1 (bullets), ε = 0.2 (diamonds), ε = 0.3 (down-triangle),
and ε = 0.4 (up-triangle).

a non-interacting particle system by ignoring the site oc-
cupancy restriction. These simulations show that after
an extremely long transient period, the displacements of
interacting particles and non-interacting particles nearly
match (figure 4), thereby confirming that hard core in-
teractions become irrelevant asymptotically, and that the
behavior is governed by disorder alone.

Our scaling analysis tacitly assumes that disorder is
small. A comparison of the behaviors with moderate dis-
orders and with no disorder shows that regardless of the
disorder strength, mobility is strengthened by disorder
over a substantial regime (figure 5). Thus, mobility en-
hancement does not necessarily require weak disorder.

Figure 5 also shows that the displacement in a ho-
mogeneous system eventually catches up with the dis-
placement in a strongly inhomogeneous system. Indeed,
the sub-diffusive behavior (1) that characterizes a uni-
form system eventually exceeds the logarithmic displace-
ment (4) in a disordered system. However, the crossover
time t ∼ ε−8 is very large at weak disorders and in
practice, disorder enhances mobility over a substantial
time regime. Moreover, the simulations show that the
crossover time is large even at moderate and strong dis-
orders (figure 5). Finally, as suggested by (6), disorder
slows down noninteracting particles (figure 5, inset).

In conclusion, we studied how disorder affects trans-
port in an interacting particle system. We found that
the displacement is super-diffusive over a substantial pe-
riod in a disordered system whereas the displacement is
sub-diffusive without disorder. Therefore, there is an in-
tricate interplay between interaction and disorder.

Disorder provides a mechanism for controlling trans-
port properties because weak disorders result in a pro-
longed enhancement of mobility. This effect can be tested
experimentally in colloidal [21] or biological [22, 23] chan-

nels, where the slow transport (1) was realized.
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